Building partnerships and establishing consensus on regional priorities across the Upper Midwest and Great Lakes Landscape Cooperative

OLIVIA LEDEE, PH.D.[§] Department of Forest and Wildlife Ecology, University of Wisconsin, Madison

JEREMY ASH Department of Forest and Wildlife Ecology, University of Wisconsin, Madison

KARL MARTIN, PH.D. Bureau of Science Services, Wisconsin Department of Natural Resources

WILLIAM KARASOV, PH.D. Department of Forest and Wildlife Ecology, University of Wisconsin, Madison

S

MARCH 2012

Final report (year 1) to U.S. Fish and Wildlife Service for the project titled "Identification of the Most Climate Vulnerable Terrestrial Species and Natural Communities in the Upper Midwest and Great Lakes Landscape Conservation Cooperative." Grant awarded to the Wisconsin Department of Natural Resources in collaboration with the University of Wisconsin-Madison.

[§] 226 Russell Labs, 1630 Linden Dr. Madison, WI 53706; ledee@wisc.edu

Summary

Global change impacts ecological systems at all scales, yet natural resource managers do not possess the necessary resources to effectively manage all impacts. Thus, prioritization of conservation objectives is essential to respond and adapt efficiently to environmental change. Through a series of interactive workshops conducted across the Upper Midwest and Great Lakes region, we facilitated the exchange of information between scientists and managers and encouraged collaboration to address anticipated challenges. Additionally, we engaged workshop participants in a facilitated exercise to identify a list of priority terrestrial wildlife species for potential inclusion in a climate vulnerability assessment. In 2011, we conducted ten workshops across the region according to partner needs and objectives. Each agenda was unique to the area, but often included presentations and discussions on regional climate change and adaptation, coalition building and methods/tools for conducting vulnerability assessments. Each workshop resulted in a list of priority species which was then combined to generate a regional priority list. The top species identified during this process included eastern massasauga, white-tailed deer, Blanding's turtle, ruffed grouse and snowshoe hare. Using this list, our objective for the second phase of this project is to develop a quantitative vulnerability assessment for a subset of the identified species.

1. Introduction: Climate Change and Collaborative Natural Resource Management

In addition to habitat loss and fragmentation, invasive species, and pollution, global climate change has become a principal issue in biodiversity conservation and natural resource management (Root and Schneider 2006, Lindenmayer et al. 2008, Mawdsley et al. 2009). Global environmental change has (e.g. Root et al. 2003, Parmesan and Yohe 2003) and will continue to have profound impacts on ecological systems across multiple scales (Thomas et al. 2004, Bellard et al. 2012). To reduce the severity of global climate change, mitigation¹ of greenhouse gas emissions is imperative (IPCC 2007); because, climate change attributable to carbon dioxide emissions is "irreversible" for at least 1000 years (Solomon et al. 2009), adaptation² is also imperative (IPCC 2007). To achieve conservation goals in a future of unparalleled change, scientists and managers must: 1) work together to understand the resultant changes in population, communities, and ecosystems and 2) develop adaptation strategies to reduce the vulnerability³ or increase the resilience⁴ of natural systems (West et al. 2009, Mastrandrea et al. 2010).

To understand the impacts of climate change on species or systems, an important process in widespread application is vulnerability assessment⁵. With a history in environmental risk assessment, a vulnerability analysis categorizes the "degree to which a system is likely to experience harm due to exposure to a hazard", detailing the system's exposure, sensitivity and resilience to climate change and its associated impacts (Turner et al. 2003). Because of variation in institutional goals, resources, and available data, there exists a wide variety of approaches to vulnerability assessment in ecology and natural resource management (see Glick and Edelson 2011); however, a common goal is that the output, a measure of the sensitivity of the target species or system to climate change, informs decision-making. To achieve this goal, sustained interaction between scientists and managers is essential (Mastrandea et al. 2010); in contrast, when managers and scientists work in isolation, research findings may not address management objectives or relevant findings are not translated into management plans. Close scientist-manager linkages-from identifying the target species/system and collecting data to developing and implementing an adaptation strategy—may serve multiple uses: 1) information exchange, particularly on complex topics with high uncertainty, 2) effective decision-making on commonly identified problems, 3) coordination of activities and sharing of resources, and 4) increased individual/organizational

¹ The development and implementation of policies to reduce greenhouse gas emissions and enhance carbon sinks (IPCC 2007). ² The development and implementation of Initiatives and measures to reduce the vulnerability of natural and human systems to actual or anticipated climate change (IPCC 2007).

³ The degree to which a system is susceptible to adverse effects of climate change as a function of exposure, sensitivity, and adaptive capacity (IPCC 2007).

⁴ A resilient system absorbs disturbances but retains its structure and function (IPCC 2007).

⁵ Also known as impact assessment or risk assessment

capacity (Wondolleck and Yaffee 2000). Successful scientist-manager collaborations often yield successful conservation outcomes.⁶

One of the first exercises in collaborative natural resource management is to identify shared goals and interests. With limited resources available for conservation efforts, the identification of common priorities is increasingly important (Possingham et al. 2001). Collaborative management may result in more coordination, shared resources, and improved communication (Selin et al. 2000)— reducing duplication and the knowledge and resource burden on organizations. Because vulnerability analyses are often a collaboration between scientists and managers, a first step is to identify shared priorities: what are the species/systems of interest to this group? Although there are many techniques available to answer this question (O'Connor et al. 2003), two features are common to many successful collaborative initiatives: "open decision making and inclusiveness" (Selin et al. 2000). Such processes may initiate long-term partnerships for biological conservation.

In response to the need for effective conservation partnerships, the Department of the Interior established a network of Landscape Conservation Cooperatives (LCC) to address large-scale environmental problems and encourage collaborative problem solving.⁷ In 2010, we received support from the Upper Midwest and Great Lakes LCC to implement an inclusive process to engage natural resource managers and identify shared priorities for terrestrial wildlife species under climate change.⁸ In year 2, we will develop a vulnerability assessment for a subset of their priority species. The following is a report of year 1 activities, including a summary of the process and outcomes from the collaborative initiative across the Upper Midwest.

⁷ Developed in response to Secretarial Order No. 3289 (September 14, 2009), LCCs are conservation science partnerships between

⁶ See examples from Wilmsen et al. (2008) for case studies and lessons for collaborative natural resource management.

private, public, Tribal, state and federal agencies for the conservation of fish, plant and wildlife resources within their boundaries. ⁸ Principal Investigators: Karl Martin, Ph.D. (Wisconsin Department of Natural Resources) and William Karasov (University of Wisconsin-Madison). Grant title: *Identification of the Most Climate Vulnerable Terrestrial Species and Natural Communities in the Upper Midwest and Great Lakes Landscape Conservation Cooperative*.

2. Project Overview

2.1 Project Objectives

In Year 1 of the project, our goals were to:

1) to exchange information and foster communication and collaboration among scientists and managers on climate change and natural resource management, and

2) identify terrestrial species that are shared priorities for climate change vulnerability assessment.

2.2 Process

To achieve these goals, we organized ten interactive workshops with state, provincial, Federal, Tribal, and non-governmental partners across the region.

From pre-existing climate change contact lists and communication with regional coordinators, we first identified potential partners across the region (Table 1).

LOCATION	PRIMARY CONTACT	DATE
Pennsylvania	Sally Just PA Department of Conservation and Natural Resources	July 8, 2011
lowa	Katy Reeder IA Department of Natural Resources	August 1, 2011
Michigan	Christopher Hoving MI Department of Natural Resources	August 10-11, 2011
Native American Fish and Wildlife- Great Lakes Meeting	Heather Stricker Forest County Potawatomi Community	September 15, 2011
Minnesota	Ann Pierce MN Department of Natural Resources	September 26-27, 2011
USFWS T&E Program	T.J. Miller US Fish and Wildlife Service	October 5, 2011
Illinois	Kristopher Lah US Fish and Wildlife Service	October 27, 2011
Wisconsin	Tara Bergeson WI Department of Natural Resources	September and October, 2011
Ontario	Gary Nielsen Ontario Ministry of Natural Resources	December 7, 2011
Ohio	Heather Elmer OH Department of Natural Resources	December 15-16, 2011

Table 1. Locations and primary contacts for the workshops.

With their assistance, we developed materials and workshop agendas tailored to both local/state and regional interests. Partners determined the overall theme⁹ for the workshop, presentation topics, length of the workshop, how to approach stakeholder involvement, and how to integrate with existing efforts.¹⁰ Depending on themes and objectives, we scheduled workshops for 1 to 1.5 days in length. To promote inclusiveness, we asked partners to consider inviting a diverse audience, representing various groups and agencies involved in terrestrial wildlife conservation in their area. We also encouraged invitations to a breadth of taxonomic and habitat experts to ensure adequate representation of the regional biodiversity. To promote open discussion and consensus-building, we asked that invite lists not exceed 30 people. To stimulate discussion in advance of the workshop, we emailed preparatory materials to participants and encouraged them to consult with colleagues unable to attend.

2.3 Objective 1: Exchanging information and fostering collaboration

Once the theme was established for a workshop, we worked with partners to develop presentations, discussions and activities to best achieve the objectives and engage participants. The workshops typically included a minimum of one presentation directly related to partner interests. Where appropriate, we provided the presentations, but encouraged and often invited additional speakers to broaden the disciplinary perspective and encourage collaboration. For example, at two of the workshops, the respective state climatologist gave a presentation on regional climate trends and observations. In other workshops, agency or university partners spoke to ongoing research into impacts of climate change on wildlife, existing climate change adaptation initiatives and how to incorporate structured decision making into climate change planning. Other sample components to the workshops included a panel discussion on communicating climate change to the public, and small group discussions on identifying resources and ways forward for developing climate change coalitions. We often closed each workshop session with a discussion from a regional partner on links to existing and anticipated climate change programs.

⁹ Examples include: coalition-building for climate change adaptation, vulnerability assessment methods and case studies, climate change impacts on wildlife, and recent and future changes to regional climate.

¹⁰In some instances, the workshop was adapted for existing working groups on climate change and related themes, while other workshops were standalone.

2.4 Objective 2: Identifying shared priorities

To generate the list of priority species, we developed a facilitated discussion to engage participants in a prioritization exercise. First, we asked the participants to identify and define common priorities for terrestrial species conservation and management. We provided several examples: Threatened and Endangered (T&E) species, Species of Greatest Conservation Need (SGCN), economically important species, and culturally important species. Participants often selected from the above and generated additional categories to identify three to four value categories for inclusion in the list generation (Table 2). The value categories were determined via a facilitated discussion with all participants

Fable 2. The value categories used in the workshops
and the number of times they were selected.

VALUE CATEGORY	TOTAL
Threatened & Endangered/Species of Greatest Conservation Need/Species at Risk/Rare	8
Climate Sensitive	7
Other	7
Economically Important	5
Culturally Important	1
Distribution Breadth	1
Extinction Threat	1
Game Species	1
Habitat Representative	1
System Indicator	1

to represent the shared management and conservation priorities of the area.

Next, depending on group size and expertise, participants divided themselves into breakout sessions based on either habitat (often forests, wetlands and grasslands) or taxonomic (reptile/amphibians, birds, invertebrates and mammals) expertise. In each breakout group, participants were to consider the group-identified value categories and identify up to 20 species. We provided breakout groups with a list of additional ecological and data driven factors to consider (Appendix A) and a list of the regional SGCN. We included the SGCN list to provide a sense of what species might be of regional importance across the UMGL LCC, however participants were not confined to the inclusion of solely regional species. An effort was made to identify taxa to the species level, but occasionally broader groups were identified when expertise was absent or taxonomic knowledge insufficient (i.e., arthropod pollinators).

To fully complete a quantitative vulnerability assessment, a sound working knowledge of a species life history and baseline data are required. Consequently, we asked each breakout group to apply a data/knowledge filter to the list of 20 species and within each value category, ranking species according to the amount of available information. This resulted in a subset of priority species that were of high management concern to participants, but also potentially with sufficient knowledge to evaluate their vulnerability to climate change.

Following the breakout sessions, we reconvened the large group and consolidated their lists by breakout group and value categories, resulting in a species-value matrix. Participants then had the opportunity to question colleagues and or comment on the output from the different breakout sessions. The group examined the list to ensure taxonomic and habitat diversity and considered additional criteria, such as species of public interest (i.e., game species), emblematic species for the state or province (i.e., state birds) and species of high management expenditures (i.e., white-tailed deer). Through discussion and consensus, the group agreed upon a final list that represented their shared values and priorities.¹¹

¹¹ Two workshops were modified additionally given time and logistical constraints. Our workshop at the Native American Fish and Wildlife Society-Great Lakes Regional Conference was allotted a time window of 1.5 hours, so the list generation was open ended and no maximum was placed on the total number of species. Additionally, our workshop with the US Fish and Wildlife Service Region 3 Threatened and Endangered Species Coordinators Meeting focused exclusively on the T&E species, so their taxonomic scope was widened to include plants and aquatic animals.

3. Outcomes

In total, the collective participation in the workshops amounted to 225 participants representing 62 different agencies (Figure 1). The

majority of participants were from state/provincial agencies (51% of total participants), however federal government agencies were well-represented (21% of total participants). Additional government representation came from county and city level staff, including biologists, park planners, and natural resource

managers. Conservation groups

Figure 1. Breakdown of participants by organization

included regional chapters and national representatives from major conservation NGOs (i.e., Audubon and The Nature Conservancy), as well as local conservation groups and science education centers (Appendix B).

Using the lists from the 10 workshops, we identified the top 30 species shared across the workshops (Table 4). Listed in 8 out of the 10 workshops, Eastern massasauga distinctly emerged as the top regional priority for a climate vulnerability assessment. More generally, however, only 5 reptile and amphibian species were on the final list, as compared to 12 bird species, 10 mammals and 3 invertebrate species. The low number of invertebrates is likely a function of the amount of knowledge available to conduct a vulnerability assessment, as well as the difficulty in obtaining input from invertebrate experts throughout the workshops.

Across the entire compiled list, there were 181 species identified (Appendix B). Similar to the list of 30 species, birds had the highest representation (39%), followed by mammals (27%), reptiles and amphibians (20%) and invertebrates (14%). Some regional trends in shared priority species emerged. In general, MI, MN and WI tended to share a higher proportion of priority species with each other than across the region (30% of the species were found on at least two lists), while IA, IL and OH had more similar species than with other states (24%). For the eastern region of the study, ON, MI, PA and WI shared 23% of the priority species.

Table 5. The top 30 species identified as priorities across all 10 workshops.

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	IA	-	W	MM	NAFWS	НО	NO	PA	M	SUM
Reptile/Amphibian	Eastern massasauga	Sistrurus catenatus catenatus	x	x	x	x			x	x	x	x	8
Mammal	White-tailed deer	Odocoileus virginianus		x			x	x	x	x	x	x	7
Reptile/Amphibian	Blanding's turtle	Emydoidea blandingii		x	x	x	x	x	x	x			7
Bird	Ruffed grouse	Bonasa umbellus		x		x		x		x	x	x	6
Mammal	Snowshoe hare	Lepus americanus				x	x	x		x	x	x	6
Bird	Cerulean warbler	Dendroica cerulea		x	x			х	x		x		5
Bird	Golden-winged warbler	Vermivora chrysoptera			x		x			x	x	x	5
Invertebrate	Hine's emerald dragonfly	Somatochlora hineana	x		х	x				x		x	5
Invertebrate	Karner blue butterfly	Plebejus melissa samuelis			x	x	x	x	x				5
Mammal	Little brown bat	Myotis lucifugus	x		x				x	x	x		5
Mammal	Moose	Alces alces				x	x	x		x		x	5
Reptile/Amphibian	Timber rattlesnake	Crotalus horridus		x	x		x		x		x		5
Bird	Black tern	Chlidonias niger			x	x	x					x	4
Bird	Common loon	Gavia immer				x	x	х				x	4
Bird	Eastern meadowlark	Sturnella magna		х		х	x					x	4

ΤΑΧΑ	COMMON NAME	SCIENTIFIC NAME	FWS	P	2	WI	MM	NAFWS	НО	NO	PA	M	SUM
Bird	Henslow's sparrow	Ammodramus henslowii		x	х	х						х	4
Bird	Ring-necked pheasant	Phasianus colchicus		x			x		x			x	4
Bird	Wild turkey	Meleagris gallopavo				х		x		x	x		4
Invertebrate	Bumblebee sp.	<i>Bombus</i> sp.		x				x	x		x		4
Mammal	American marten	Martes americana				х		x		x		x	4
Bird	Bobolink	Dolichonyx oryzivorus		x	x				x				3
Bird	Greater prairie-chicken	Tympanuchus cupido			x		x					x	3
Bird	Red-headed woodpecker	Melanerpes erythrocephalus			х			х	х				3
Mammal	American badger	Taxidea taxus					x	x				x	3
Mammal	Beaver	Castor canadensis			x	x		x					3
Mammal	Gray fox	Urocyon cinereoargenteus		x	х			x					3
Mammal	Indiana bat	Myotis sodalis	x		x				x				3
Mammal	Northern flying squirrel	Glaucomys sabrinus						x			x	x	3
Reptile/Amphibian	Mole salamanders	Ambystoma sp.							х	х	х		3
Reptile/Amphibian	Red-backed salamander	Plethodon cinereus								х	х	x	3

4. Next Steps: Vulnerability Assessment

Anticipating the response of biodiversity to climate change and developing appropriate management strategies is a challenge faced by natural resource managers. Tools such as quantitative vulnerability assessments provide the necessary information to predict species' responses to climate change and other stressors. Consequently, we are developing a vulnerability assessment for a subset of the species identified as priorities in phase one of the project. For year 2, we will develop ecological models to assess the impacts of climate change and other stressors on their future distribution and abundance. This assessment will integrate available data and scientific understanding in a transparent process, detailing assumptions and uncertainties, to project population-level responses of target species to climate change. We anticipate completion of the assessment in 2013 and distribution of the findings shortly thereafter.

5. References

- Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters: doi: 10.1111/j.1461-0248.2011.01736.x.
- Glick, P., B.A. Stein, and N.A. Edelson, editors. 2011. Scanning the conservation horizon: A guide to climate change vulnerability assessment. National Wildlife Federation, Washington, D.C.
- IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
- Lindenmayer, D., R. J. Hobbs, R. Montague-Drake, J. Alexandra, A. Bennett, M. Burgman, P. Cale, A. Calhoun, V. Cramer, P. Cullen, D. Driscoll, L. Fahrig, J. Fischer, J. Franklin, Y. Haila, M. Hunter, P. Gibbons, S. Lake, G. Luck, C. MacGregor, S. McIntyre, R. Mac Nally, A. Manning, J. Miller, H. Mooney, R. Noss, H. Possingham, D. Saunders, F. Schmiegelow, M. Scott, D. Simberloff, T. Sisk, G. Tabor, B. Walker, J. Wiens, J. Woinarski, and E. Zavaleta. 2008. A checklist for ecological management of landscapes for conservation. Ecology Letters 11:78-91.
- Mastrandrea, M. D., N. E. Heller, T. L. Root, and S. H. Schneider. 2010. Bridging the gap: Linking climate-impacts research with adaptation planning and management. Climatic Change 100:87-101.
- Mawdsley, J. R., R. O'Malley, and D. S. Ojima. 2009. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23:1080-1089.
- O'Connor, C., M. Marvier, and P. Kareiva. 2003. Biological vs. social, economic and political prioritysetting in conservation. Ecology Letters 6:706–711.
- Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42.
- Possingham, H. P., S.J. Andelman, B.R. Noon, S. Trombulak, and H.R. Pulliam. 2001. Making smart conservation decisions. Page 225-244 *in* G. Orians and M. Soule, editors. Conservation biology: Research priorities for the next decade. Island Press, Washington DC.
- Root, T. L., and S. H. Schneider. 2006. Conservation and climate change: The challenges ahead. Conservation Biology 20:706-708.
- Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57-60.
- Selin, S. W., M. A. Schuett, and D. Carr. 2000. Modeling stakeholder perceptions of collaborative initiative effectiveness. Society & Natural Resources 13:735-745.

- Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America 106: 1704-1709.
- Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145-148.
- Turner, B. L., R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, N. Eckley, J. X. Kasperson, A. Luers, M. L. Martello, C. Polsky, A. Pulsipher, and A. Schiller. 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America 100:8074-8079.
- West, J. M., S. H. Julius, P. Kareiva, C. Enquist, J. J. Lawler, B. Petersen, A. E. Johnson, and M. R. Shaw. 2009. US natural resources and climate change: Concepts and approaches for management adaptation. Environmental Management 44:1001-1021.
- Wilmsen, C., W. Elmendorf, L. Fisher, J. Ross, B. Sarathy, and G. Wells, editors. 2008. Partnerships for empowerment: Participatory research for community-based natural resource management. Earthscan, Sterling, VA.
- Wondolleck, J., and S. Yaffee. 2000. Making collaboration work: lessons from innovation in natural resource management. Island Press, Washington, D.C.

Appendix A. The ecological, life history, data and management factors provided to participants to contemplate while determining their list of species.

Direct Impacts of Climate Change

- Advance of spring conditions
- Spatial shift in suitable conditions
- High temperature events
- Altered snow cover
- Drought
- Heavy precipitation/flooding events

Indirect Impacts of Climate Change

- Changes in habitat
- Species interactions

Life History Traits/Characteristics

- Specialized habitat and/or microhabitat requirements
- Narrow environmental thresholds likely to be exceeded
- Dependence on an environmental cue
- Dependence on inter-specific interaction likely to be altered
- Poor dispersal ability
- Disease/parasitism
- Maladaptive behavior
- Coupling with atmosphere-ocean circulation patterns

Management-driven Factors

- Species with public appeal
- Species with regulatory or management challenges
- Species that are already priorities for land managers
- Species with high management expenditures or activity (e.g., reintroductions programs or history of investment)
- Harvested species
- Ecosystem service providers or engineers
- Probability of success

Data-driven Factors

- Species with a lot of existing data (e.g., monitoring or long-term studies)
- Focal species of analyses by group/agency
- Representation in other vulnerability assessments (well-versus under-represented)

Appendix B. All of the participating agencies from the ten workshops.

Aldo Leopold Foundation Army Corps of Engineers Bad River Band Clayton County Conservation, Iowa Cleveland Metroparks, Ohio Delaware River Basin Commission, Pennsylvania Ducks Unlimited Inc. Fond du Lac Band Grand Portage Band Grange Insurance Audubon Center, Ohio Illinois Department of Natural Resources Illinois Natural History Survey Iowa Department of Natural Resources Lac du Flambeau Band Lehigh Gap Nature Center, Pennsylvania Metro Parks, Serving Summit County, Ohio Metroparks of the Toledo Area, Ohio Michigan Department of Natural Resources Michigan Natural Features Inventory Michigan State University Extension Minnesota Department of Natural Resources Moravian College National Audubon Society National Audubon Society, Pennsylvania National Wildlife Federation Natural Lands Trust, Pennsylvania **Ohio Bird Conservation Initiative Ohio Department of Natural Resources** Ohio Division of Wildlife **Ontario Ministry of Natural Resources OSU** Ohio Biodiversity Partnership Pennsylvania State University

Pennsylvania Department of Conservation and Natural Resources Pennsylvania Fish and Boat Commission Pennsylvania Game Commission Pennsylvania Natural Heritage Program Pennsylvania Sea Grant Red Lake Band Stockbridge-Munsee Community The Field Museum The Nature Conservancy, Illinois The Nature Conservancy, Iowa The Nature Conservancy, Michigan The Nature Conservancy, Ohio The Nature Conservancy, Pennsylvania The Nature Conservancy, Wisconsin The Ohio State University The Wilds, Ohio University of Illinois University of Minnesota-Twin Cities University of Minnesota-Duluth-Natural Resources Research Institute University of Wisconsin-Madison University of Wisconsin-Stevens Point US Forest Service US Geological Survey US Department of Interior-Bureau of Indian Affairs-Great Lakes Agency US Fish and Wildlife Service US Fish and Wildlife Service Joint Venture US Fish and Wildlife Service/Environmental Protection Agency Western Michigan University Wild Resource Conservation Program Winneshiek County Conservation, Iowa Wisconsin Department of Natural Resources

APPENDIX C. All species identified as priorities in the 10 workshops. Nomenclature following taxonomic standards at: <u>http://www.itis.gov/</u>

ΤΑΧΑ	COMMON NAME	SCIENTIFIC NAME	FWS	Ρ	2	¥	NM	NAFWS	НО	NO	PA	M	SUM
	American woodcock	Scolopax minor		х		х							2
-	Bald eagle	Haliaeetus leucocephalus		х				x					2
-	Barn owl	Tyto alba								x			1
-	Bell's vireo	Vireo bellii										x	1
-	Black tern	Chlidonias niger			х	x	x					x	4
	Black-billed cuckoo	Coccyzus erythropthalmus			х								1
	Black-crowned night heron	Nycticorax nycticorax									x		1
BIRD	Black-throated blue warbler	Dendroica caerulescens					x						1
	Blue winged teal	Anas discors				x	x						2
	Bobolink	Dolichonyx oryzivorus		х	x				x				3
	Boreal chickadee	Poecile hudsonica								x			1
	Boreal owl	Aegolius funereus						х					1
	Brown-headed cowbird	Molothrus ater				x							1
	Canada goose	Branta canadensis		х				x					2
	Cattle egret	Bubulcus ibis						x					1

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΡI	=	W	MM	NAFWS	НО	NO	PA	M	SUM
	Cerulean warbler	Dendroica cerulea		x	х			х	x		x		5
	Common loon	Gavia immer				х	х	х				x	4
	Common raven	Corvus corax						х					1
	Common tern	Sterna hirundo				x							1
	Dickcissel	Spiza americana							x			x	2
BIRD	Eastern meadowlark	Sturnella magna		x		х	x					x	4
	Gadwall	Anas strepera						х					1
	Golden eagle	Aquila chrysaetos						х					1
	Golden-winged warbler	Vermivora chrysoptera			х		х			x	x	x	5
	Gray jay	Perisoreus canadensis						х		х			2
	Great gray owl	Strix nebulosa						х					1
	Greater prairie-chicken	Tympanuchus cupido			х		х					x	3
	Greater scaup	Aythya marila				х							1
	Green heron	Butorides virescens						х					1
	Henslow's sparrow	Ammodramus henslowii		х	х	х						x	4
	King rail	Rallus elegans										x	1

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	=	W	M	NAFWS	НО	NO	PA	M	SUM
	Kirtland's warbler	Dendroica kirtlandii	x										1
	Lesser scaup	Aythya affinis				х			х				2
	Loggerhead shrike	Lanius ludovicianus					х						1
	Lousiana waterthrush	Seiurus motacilla									x		1
BIRD	Mallard	Anas platyrhynchos		x		х							2
	Marsh wren	Cistothorus palustris							х				1
	Mottled duck	Anas fulvigula						х					1
	Mourning dove	Zenaida macroura								х			1
	Mute swan	Cygnus olor				х							1
	Northern bobwhite	Colinus virginianus							x			x	2
	Northern cardinal	Cardinalis cardinalis						х					1
	Northern goshawk	Accipiter gentilis						х					1
	Northern harrier	Circus cyaneus							х				1
	Northern pintail	Anas acuta		x				х					2
	Piping plover	Charadrius melodus	х			х							2
	Red-headed woodpecker	Melanerpes erythrocephalus			x			x	x				3

ΤΑΧΑ	COMMON NAME	SCIENTIFIC NAME	FWS	Ρ	=	W	MM	NAFWS	НО	NO	PA	M	SUM
RD	Red-shouldered hawk	Buteo lineatus		х		х						x	3
BIRD	Ring-necked duck	Aythya collaris					x						1
	Ring-necked pheasant	Phasianus colchicus		х			x		x			x	4
	Ruffed grouse	Bonasa umbellus		x		x		x		x	x	x	6
	Sandhill crane	Grus canadensis		x		x		x					3
	Scarlet tanager	Piranga olivacea									x		1
	Sharp-shinned hawk	Accipiter striatus									x		1
BIRD	Sharp-tailed grouse	Tympanuchus phasianellus						x					1
	Trumpeter swan	Cygnus buccinator						х					1
	Upland sandpiper	Bartramia longicauda				х							1
	Veery	Catharus fuscescens							x				1
	Virginia rail	Rallus limicola							x				1
	Whip-poor-will	Caprimulgus vociferus								x			1
	White-throated sparrow	Zonotrichia albicollis					x						1
	Wild turkey	Meleagris gallopavo				х		х		х	х		4
	Wood duck	Aix sponsa		х					х				2

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	IA	2	W	MM	NAFWS	НО	NO	PA	M	SUM
TAXA BIRD FISH	Wood thrush	Hylocichla mustelina					х				х		2
BIRD	Yellow rail	Coturnicops noveboracensis					х					x	2
	Yellow-headed blackbird	Xanthocephalus xanthocephalus			x								1
FISH	Pallid sturgeon	Scaphirhynchus albus	x										1
	Arthropod pollinators						х						1
	Azure sp.										x		1
	Baltimore checkerspot butterfly	Euphydryas phaeton		x									1
	Black-legged tick	Ixodes scapularis								x			1
	Bog bean buck moth	Hemileuca sp.								х			1
	Bumblebee sp.	Bombus sp.		x				x	x		х		4
INVERTEBRATE	Burrowing mayfly sp.	Hexagenia sp.							x				1
	Clubshell	Pleurobema clava	x										1
	Dakota skipper	Hesperia dacotae					х						1
	Deer ticks	Ixodes scapularis						x			х		2
	Dragonfly sp.			x							х		2
	Fly poison borer moth	Papaipema sp.									х		1

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	-	¥	NM	NAFWS	НО	NO	PA	M	SUM
	Hine's emerald dragonfly	Somatochlora hineana	х		х	х				х		x	5
	Illinois cave amphipod	Gammarus acherondytes	х										1
	Incurvate emerald dragonfly	Somatochlora incurvata				x							1
	Iowa pleistocene snail	Discus macclintocki		x									1
	Karner blue butterfly	Plebejus melissa samuelis			x	х	x	x	x				5
INVERTEBRATE	Lake Huron locust	Trimerotropis huroniana				х				х			2
	Mayflies										х		1
	Mitchell's satyr	Neonympha mitchellii mitchellii	х										1
	Monarch butterfly	Danaus plexippus						x					1
	Mosquitoes							x			x		2
	Moth sp.								x				1
	Ottoe skipper	Hesperia ottoe		х									1
	Rattlesnake master borer moth	Papaipema eryngii			x								1
	Rayed bean	Villosa fabalis	х										1
	Regal fritillary	Speyeria idalia			х						х	x	3
MAMMAL	13-lined ground squirrel	Spermophilus tridecemlineatus										x	1

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	2	W	ZW	NAFWS	НО	NO	PA	M	SUM
	American badger	Taxidea taxus					х	x				х	3
	American marten	Martes americana				х		х		х		х	4
	Appalachian cottontail	Sylvilagus obscurus									x		1
MAMMAL	Beaver	Castor canadensis			х	х		х					3
	Black bear	Ursus americanus						х			x		2
	Bobcat	Lynx rufus		x				x					2
	Bog lemming	Synaptomys cooperi						х					1
	Canada lynx	Lynx canadensis						х		х			2
	Common opossum	Didelphis marsupialis						x		х			2
	Common porcupine	Erethizon dorsatum									x		1
	Coyote	Canis latrans						х					1
	Deer mouse	Peromyscus maniculatus						х					1
	Eastern red bat	Lasiurus borealis				x							1
	Ermine or Short-tailed weasel	Mustela erminea						х					1
	Fisher	Martes pennanti						x					1
	Fox squirrel	Sciurus niger		х				x					2

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	2	W	ZW	NAFWS	НО	NO	PA	M	SUM
	Franklin's ground squirrel	Spermophilus franklinii			х								1
	Gray fox	Urocyon cinereoargenteus		х	х			x					3
	Gray squirrel	Sciurus carolinensis						x					1
	Gray wolf	Canis lupus				х		x					2
	Hoary bat	Lasiurus cinereus			х								1
	Indiana bat	Myotis sodalis	x		х				x				3
	Least shrew	Cryptotis parva			x								1
	Little brown bat	Myotis lucifugus	x		х				x	х	x		5
MAMMAL	Long-tailed weasel	Mustela frenata						x					1
	Meadow vole	Microtus pennsylvanicus					х		x				2
	Moose	Alces alces				х	х	x		х		x	5
	Muskrat	Ondatra zibethicus					x		x				2
	Northern flying squirrel	Glaucomys sabrinus						x			x	x	3
	Northern long-eared bat	Nyctophilus arnhemensis					х						1
	Northern river otter	Lontra canadensis				х					х		2
	Pine marten	Martes martes						x					1

ΤΑΧΑ	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	-	¥	Ν Μ	NAFWS	НО	NO	PA	M	SUM
	Prairie vole	Microtus ochrogaster										х	1
	Pygmy shrew	Sorex hoyi			х								1
	Raccoon	Procyon lotor						x					1
	Red squirrel	Tamiasciurus hudsonicus						х	x				2
MAMMAL	River otter	Lontra canadensis						x					1
	Snowshoe hare	Lepus americanus				х	х	х		х	x	х	6
	Southern flying squirrel	Glaucomys volans			х			x		х			3
	Southern red-backed vole	Clethrionomys gapperi					х	х					2
	Spruce grouse	Falcipennis canadensis						x				x	2
	Striped skunk	Mephitis mephitis						х					1
	Timber wolf	Canis lupus										x	1
	Water shrew	Sorex palustris										х	1
	White-footed mouse	Peromyscus leucopus								х			1
	White-tailed deer	Odocoileus virginianus		x			x	x	x	х	x	х	7
	Decurrent false aster	Boltonia decurrens	х										1
PLANI	Fassett's locoweed	Oxytropis campestris var. chartacea	х										1

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	2	W	M	NAFWS	НО	NO	PA	M	SUM
	Hall's bulrush	Schoenoplectus hallii	х										1
	Michigan monkey-flower	Mimulus glabratus var. michiganensis	х										1
	Virginia sneezeweed	Helenium virginicum	х										1
	Western prairie fringed orchid	Platanthera praeclara	x										1
	American bullfrog	Lithobates catesbeianus						х					1
	Blanding's turtle	Emydoidea blandingii		x	x	x	x	x	x	x			7
	Blue-spotted salamander	Ambystoma laterale				x	х						2
	Bog turtle	Clemmys muhlenbergii									x		1
	Bullsnake	Pituophis catenifer										x	1
REPTILE/	Eastern box turtle	Terrapene carolina							x				1
AMPHIBIAN	Eastern fox snake	Elaphe gloydi							х				1
	Eastern hellbender	Cryptobranchus alleganiensis alleganiensis	х								х		2
	Eastern massasauga rattlesnake	Sistrurus catenatus catenatus	х	х	х	х			х	х	х	х	8
	Eastern spadefoot toad	Scaphiopus holbrookii							х				1
	Four-toed salamander	Hemidactylium scutatum			х		х						2
	Fowler's toad	Anaxyrus fowleri				х							1

ΤΑΧΑ	COMMON NAME	SCIENTIFIC NAME	FWS	Ρ	2	W	MM	NAFWS	НО	NO	PA	M	SUM
	Gray ratsnake	Elaphe spiloides								x			1
	Illinois chorus frog	Pseudacris illinoensis			x								1
	Map turtle	Graptemys pseudogeographica						x					1
	Mink frog	Lithobates septentrionalis										х	1
	Mole salamanders	Ambystoma sp.							x	x	x		3
REPTILE/	Northern coal skink	Eumeces anthracinus anthracinus									х		1
	Northern cricket frog	Acris crepitans		х					x				2
	Northern leopard frog	Rana pipiens					x				x		2
AMPHIBIAN	Ozark hellbender	Cryptobranchus alleganiensis bishopi	х										1
	Painted turtle	Chrysemys picta						х		х			2
	Red-backed salamander	Plethodon cinereus								х	x	х	3
	Smooth green snake	Opheodrys vernalis		х				x					2
	Snapping turtle	Chelydra serpentina						x		х			2
	Spotted turtle	Clemmys guttata			x					х			2
	Spring peeper	Pseudacris crucifer									x		1
	Tiger salamander	Ambystoma tigrinum		х									1

ТАХА	COMMON NAME	SCIENTIFIC NAME	FWS	ΙA	2	W	M	NAFWS	НО	NO	PA	M	SUM
REPTILE/ AMPHIBIAN	Timber rattlesnake	Crotalus horridus		x	х		х		x		x		5
	Western chorus frog	Pseudacris triseriata								x			1
	Western hognose snake	Heterodon nasicus					х						1
	Wood frog	Lithobates sylvaticus			х							x	2
	Wood turtle	Glyptemys insculpta					х	x					2
	Yellow mud turtle	Kinosternon flavescens			х								1